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Abstract

The one-dimensional hydrodynamics simulator pro-
vides an on-line interface for pedagogical purposes,
allowing students to study the effects of the equa-
tions of motion for fluid dynamics in one-dimension.
It is part of a larger project, the Digital Demo Room,
that aims to provide several different simulators of in-
terest to astrophysical applications.

1. Background and Introduction

1.1. Project Motivation

The original computer code for the one-dimensional
hydrodynamics simulator was written by Professor
Charles F. Gammie to assist in basic fluid dynamics
instruction. Although a useful tool, the code was
difficult to apply to a classroom environment in
its original format. Learning to use the software
required to propagate and plot the waves detracted
from the primary goal of teaching basic fluid
dynamics. For this reason the one-dimensional hy-
drodynamics simulator was developed and added to
the Digital Demo Room, providing an interactive on-
line user interface that puts the workings of the code
and plotting programs in the background and allows
the student to concentrate on learning the physics
instead of the programming. The simulator takes the
user’s inputs for various physical and computational
parameters and performs all the necessary calcula-
tions to produce an animated plot of the wave in
Motion Picture Experts Group (mpeg) movie format.

In its present form, the simulator is designed
to propagate linear waves, which may or may not
be under the influence of magnetic fields, and
hydrodynamic shock tubes. The absence of any
magnetic field influence defines hydrodynamic waves;
alternatively, effects due to magnetic fields result in
more complicated wave motions that fall under the
heading of magnetohydrodynamics (MHD).

1.2. One Dimensional Hydrodynamics

To simulate hydrodynamic and MHD waves, the
simulator uses formulas derived from the basic con-
servation equations of fluid dynamics and Maxwell’s
equations for magnetic fields:

Mass conservation (continuity equation):
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Divergence-Free Formula:

V-B=0

In these equations, p, v, p and wu represent the
fluid density, velocity, pressure and internal energy
respectively, ¢ stands for time and B is the external
magnetic field vector. For hydrodynamic waves, only
the first three equations are relevant and the two
magnetic field terms in the momentum conservation
equation (which represent magnetic pressure and
tension respectively) are ignored.
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Bi is called the convective derivative defined as
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and & is the gravitational potential given by the
Poisson equation

V2® = 4nGp

The energy conservation formula is written in
internal energy form rather than total energy.

An additional constraint used is the ideal gas
equation of state

p=(-1u

which relates the fluid pressure to the internal
energy using the adiabatic index 7 (see section 2.3.2.
Physical Parameters).

The equations are evolved using the ZEUS method
(Stone & Norman 1992a,b). A full description of the
method is beyond the scope of this paper.

1.2.1. Linear Waves

One part of the simulator allows the user to integrate
small amplitude waves. A perturbation is introduced
into the conservation and magnetic field equations by
modifying the variable terms as follows:

P =po+0p@,
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where pg, Vg, ug and By represent initial conditions
of the fluid element and magnetic field and Jp(z ),
0V(2,t), OU(a,) and 6By ) signify small changes in
the density, velocity, internal energy and magnetic
field from the undisturbed equilibrium conditions.
To create an initial equilibrium, pg, up and By are
made constant and v is set to zero.

To begin the linearization of the conservation
equations, the following forms for the perturbations
are adopted:

5p — dﬁe(ikm—iwt)
Sv = dﬁe(ik~m—‘iwt)
Su = (Sﬂe(ik'm_iwt)

5B = 6Be(ik-w—iwt)

Similar perturbations are used for the pressure and
potential terms to create factors of §® and 6p; how-
ever, substitution and linearization of the Poisson
equation and the ideal gas equation of state produce
the relations & = —%’Jgdﬁ and dp = (v —1)da.
These terms can then be substituted back into the
conservation equations to eliminate the changes in
potential and pressure as variables.

To complete the linearization of the conservation
equations the previous substitutions are performed
and the equations are simplified, ignoring terms
of second order and higher. In addition, since the
simulator only only allows quantities to vary along
one dimension, the wave vector term (k) is set so
that k = ki.

1.2.1.1. Hydrodynamic Waves

For hydrodynamic waves the magnetic pressure and
tension terms of the momentum conservation equa-
tion are dropped and the magnetic induction and



divergence-free formulas are ignored. Using the sub-
stitutions described above results in the following lin-
earized equations of motion:

wdp — iwpedd =0
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k

0p +iwpedd —ik(y—1)da =0
ikyuodd — iwdt =0

With the conservation equations properly linearized
and perturbed the coefficients of the equations can be
written in matrix form. Evaluating the determinant
of this matrix produces the natural frequencies of the
waves and their associated eigenvectors:
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This determinant yields the relation
w (w?po — K>y (v — 1) ug + 47Gp§) = 0

which gives three natural frequencies: w = 0 and
w = d:\/’ﬁ"’(zio_l)uo —47Gpy. The sound speed c,

can be defined as ¢2 = ﬂ"—_olm, which turns the
second two frequencies into the familiar dispersion
relation for a gravitationally-modified sound wave:
w? = k?c2 — 4nGpo.

Plugging the natural frequencies back into the
matrix and solving for the eigenvectors associated
with each wave gives the relations:
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for the frequency w = 0. This frequency/eigenvector
combination defines an entropy wave. The sound
wave frequencies produce the eigenvector:
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Linearization of the hydrodynamics equations of mo-
tion therefore results in two types of waves: entropy
waves and sound waves.

1.2.1.2. Magnetohydrodynamic Waves
Linearization of MHD waves is similar to the proce-
dure outlined for hydrodynamic waves with the ad-
dition of the magnetic terms in the momentum equa-
tion and the additional constraints of the magnetic
induction and divergence-free formulas. As an addi-
tional simplification, the value of the magnetic field
in the z direction, (5320, is set to zero. Since the
wavevector is oriented along the x-axis, this simplifi-
cation can be made without loss of generality because
an arbitrary equilibrium and wave can be rotated into
this configuration. The resulting one-dimensional lin-
earized equations are then:

—iwdp + ipokdvy = 0

—iwdl + yiugkdvy = 0
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The inclusion of a magnetic field introduces the pos-
sibility of transverse waves, making values for v, and
v, necessary. Obviously, this greatly complicates the
calculations, resulting in an 8 x 8 matrix that is dif-
ficult to evaluate. The determinant of this matrix
results in eight natural frequencies. To simplify the
equations somewhat the following variables are de-
fined:
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The first variable, vy, is called the Alfven wvelocity.
The angle 6 between the Alfven velocity and the
x-axis is also introduced so that va, = va cos ()

and vay = v4sin (0).

The first natural frequency results in a mode
which contains magnetic monopoles and can be
eliminated by the constraint V - B = 0. With
the inclusion of the newly defined variables, the
remaining seven natural frequencies can be written
as:

w=20

w = +egkv/B cos(8)
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B(2-2a+B)+48 (a — 1) cos? (0))%])

The + terms pull out the remaining frequencies from
these three equations.
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The first frequency, w = 0, like the hydrody-
namic waves, defines an entropy wave with the
eigenvector
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The next two frequencies (the second equation with
both + and - terms) represent transverse Alfven
waves. The eigenvector for the Alfven waves is:
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The + determines the direction of travel.

The remaining equation, which nests four dif-
ferent frequencies, is much more complicated. Two
waves originate from these frequencies: fast and
slow waves. The computed values of the frequencies
determine which wave is derived; the two frequencies
that result in the largest absolute value for w are fast
waves (propagating in two directions) and the two
remaining frequencies with smaller absolute values
are slow waves traveling in two opposite directions.
The eigenvector corresponding to these waves is also
complicated, so rather than writing it in matrix form
they are given as separate equations. Also, to further
simplify the equations the frequency is left written as
w instead of substituting the complicated equation
for w found above. The eigenvector equations are:
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In the computer code, factors of v4w have been
absorbed into the definition of the magnetic field
vector B for all the above equations to simplify the
programming.

Linearization of the MHD equations of motion
therefore results in four types of waves: entropy
waves, Alfven waves and fast and slow waves, each
with two possible directions of travel.



1.2.2. Shock Tubes

The simulator also allows construction of shock
tube initial conditions. A shock tube is a fluid
discontinuity, with distinct left and right states on
either side of the shock. The simulator allows the
user to input values for the fluid properties on each
side of the shock.

Although the details of the physics behind shock
propagation is beyond the scope of this paper,
the default values used by the simulator are taken
from a well-known example. The default initial
conditions are from the Brio & Wu MHD problem,
which is an MHD analog of the Sod hydrodynamic
shock tube problem (Stone & Norman 1992b). The
values defining the initial conditions of this tube
are: v = 2.0, Bzo,(left) = 0.75, Bwo(right) = 0.75,

B, ety = 1.0, B (vight) = 1.0, P(let) = 1.0,
p(right) = 0.1, p(left) = 1.0 and p(right) = 0.125.
Initial fluid velocities for both the left and right state
are set to zero. A detailed analysis of this shock
tube can be found in Stone & Norman (1991b).

2. The Simulator

The simulator uses a simple web interface. The
user is led to the desired wave through a se-
ries of questions, which culminates in a page
that requests the parameter inputs specific to
the type of wave requested. The front page
is located at the universal resource locator (url)
http://ddr.physics.uiuc.edu/ddr/oned /index.html.

2.1. Knowledge Level Options

Three levels of user knowledge are available: begin-
ner, intermediate and expert. The beginner level in-
terface does not request any user inputs; rather, a list
of previously run models is given with descriptions for
each and the user simply selects the wave he or she
would like to see. At the intermediate level, only a
limited number of parameters are requested from the
user. None of the computational parameters (see be-
low) are user-defined at this level and only a select
number of physical parameters are input by the user.

The expert level interface allows the user to define all
of the parameters the simulator offers. For purposes
of describing the simulator all options available at the
expert level are listed in the following paragraphs.

2.2. Wave Type Options

In its present form the simulator only offers two types
of waves, as previously described: linear amplitude
hydrodynamic and MHD waves and shock tubes.

2.3. Simulation Parameters

Two basic type of parameters are used by the simu-
lator to create movies files: computational and phys-
ical. Computational parameters are used by the sim-
ulator program to determine properties of the plot
itself, while the physical parameters define the prop-
erties of the wave being evaluated.

2.3.1. Computational Parameters

Four user-defined computational parameters are
available in the simulator at the expert level. All
four are requested in both the linear waves and the
shock tubes.

2.3.1.1. Boundary Conditions

The boundary conditions tell the simulator what to
do with the wave at the edges of the plot. Three op-
tions are available: periodic, reflecting and standard.
Periodic boundary conditions cause the wave to ap-
pear on the opposite side of the graph after it moves
past a boundary. With reflecting conditions the wave
will “bounce back” from the edges (careful - this con-
dition may cause the wave to “interfere” with itself).
Under standard conditions the wave will simply move
into a “ghost zone” after passing a boundary.

2.3.1.2. Courant Number

The Courant number helps determine the size of dt,
or the magnitude of the timestep between frames. A
larger value of the Courant number causes a larger
value in dt, and therefore less frames in the final sim-
ulation.

2.3.1.3. Dumping Frequency
The simulator creates movie files by first creating a



series of still images, one for each timestep in the sim-
ulation. Each still image then becomes a single frame
in the mpeg movie file. The dumping frequency pa-
rameter tells the simulator how often to create an
image file. Smaller values of this parameter result in
larger numbers of images and will therefore require
additional computation time and produce a larger
mpeg file. For instance, a value of 0.1 will result
in 10 images for every timestep (determined by the
“integration time” parameter described next).

2.3.1.4. Integration Time

The integration time parameter determines the
length of the time scale run by the simulator, and,
therefore, the number of frames in the resulting movie
file. A larger value for the integration time will re-
quire a longer wait as the simulator performs com-
putations and will also result in a larger movie file.
Users with slow internet connections may want to opt
for smaller integration times.

2.3.1.5. Numerical Resolution

The numerical resolution determines the “smooth-
ness” of the wave by setting the number of points
plotted. The distance scale is divided by the nu-
merical resolution to calculate dx, or the amount of
change in “x”, for each point plotted. Larger values
for this parameter greatly increase the accuracy
of the resulting plots; however, larger values also
increase the length of time required to perform
calculations.

2.3.2. Physical Parameters

The physical parameters define the properties of
the fluid and its medium. Which parameters are
requested depend on the type of wave the user wishes
to evaluate.

2.3.2.1. Adiabatic Index

In an adiabatic process the entropy of each fluid parti-
cle remains constant and therefore no heat exchange
occurs between different fluid elements. The adia-
batic index, denoted <, describes the specific heat
ratios of fluid elements and is used in the simulator

according to the equation:

p=(-1u

Both linear waves and shock tubes request inputs for
this parameter. The value of -y is given by the relation
v = "T“, where n is the number of degrees of freedom
in the fluid element. The default value for v used by
the simulator is g, appropriate for a monatomic ideal

gas.

2.3.2.2. Amplitude

The amplitude parameter determines the maximum
and minimum height of the wave. This parameter
is only requested for linear waves, and the simulator
associates the amplitude value with one of the physi-
cal properties of the wave used in its eigenvector and
may be different depending on the type of wave se-
lected. For instance, the sound wave eigenvector use
the change in velocity in the x direction, §7,, but
the MHD eigenvectors for fast and slow waves use
the change in magnetic field in the y direction, 61§y,
as the independent variable. See the previous sec-
tion describing each wave’s associated eigenvector to
determine which physical property is used as the am-
plitude for each type of linear wave.

2.3.2.3. Artificial Viscosity

Only an ideal fluid or gas will move with no energy
lost to the irreversible transfer of momentum from
internal friction between fluid elements with differ-
ing velocities. The artificial viscosity determines the
extent to which this energy is lost during fluid flow.

2.3.2.4. Density

The shock tube simulator allows user inputs for the
left and right states of the fluid density. Linear waves
have the initial density value preset.

2.3.2.5. Gravitational Potential

On a small scale, gravity has a negligible effect in
the fluid equations of motion. However, on large
scales such as those found in astrophysical applica-
tions gravitational potential can have a dramatic ef-
fect (see section 3, Sample Run). As mentioned in
section 1, the gravitational potential is given by the
Laplace equation:



V2® = 4nGp

This equation allows us to solve for ® in terms of p to
eliminate the potential as a variable. However, this
substitution introduces the “G” term, or value for
the gravitational potential, which is included in the
simulator as a user-input value for linear waves (grav-
itational potential is not an option for shock tubes).

2.3.2.6. Pressure

As with the density, the fluid pressure is a user-
input parameter for shock tubes but not linear waves.
Shock tube simulations request input for the fluid
pressure for both the left and right states.

2.3.2.7. Magnetic Fields

Magnetic fields can have a dramatic effect on a wave
composed of charged particles and vice versa. A non-
zero value for the magnetic field will affect the wave’s
velocity according to the “right-hand rule,” causing
transverse motion that introduces waves not found in
simple hydrodynamic problems, such as Alfven and
fast and slow waves.

2.3.2.8. Wave Vector

The wave vector (or wave “number” in the case of
the simulator since it operates only in one dimension)
must be an integer value; any decimal inputs for this
parameter will automatically be adjusted to the next
lowest integer value. The simulator uses the wave
number to calculate the value of “k,” used by the
eigenvectors such that k, = 27n, where n is the wave
number input by the user.

2.3.2.9. Velocity

Fluid velocity is another parameter used only in the
shock tubes. The velocities in linear waves are all set
initially to zero, but shock tubes allow input for both
the right and left fluid states.

3. Sample Run: Sound Wave Under
Differing Gravitational Potentials

The introduction of a gravitational potential has

a dramatic effect on the fluid. For a sound wave,
the dispersion relation given by w? = c2k? — 47Gpy
shows that a value of k exists which can result in a
negative value for w? (see Fig. 1). The value of k
that makes w? = 0 is called the Jean’s length, named
for its famed discoverer, English mathematician,
physicist, and astronomer Sir James Jeans. For
simplification, the simulator allows the user to vary
the value of G instead of k; the wave number is fixed
at 1 so that k = 27 (see previous description of the
wave vector parameter). In addition, the values of
¢s and p are both preset to 1 so that solving for
G with w? = 0 gives a value of 7 for the Jean’s
length. Values of G lower than 7 in the simulator
will therefore result in a stable wave, whereas larger
values make the wave unstable.

For the sample run, two sound waves were se-
lected, one a stable wave with G = 2 and another
unstable with G = 5. The stable wave propagates
normally; however, the unstable wave quickly causes
the fluid density to peak and remain in one position.
The next two pages contain still image excerpts from
these two runs (Figs. 2 and 3) which were extracted
from the middle of each simulation’s time sequence.
As expected, G = 2 resulted in a stable moving
wave, but for G = 5 the fluid had already reached a
density peak before the midpoint of the simulation.
The instabilities in the fluid caused by the unstable
wave sends shocks through the fluid, causing the
chaotic values for v, in the x velocity plot.

Unstable | Stable

Jean's Length

Fig.1: Effect of Jean’s length on natural frequency w



Fig.2: Stable Sound Wave.

Image captured from the middle frame of a sample run of a sound wave with a value of G which is below the
Jean’s length: G = 2. As expected, the simulation created a stable sound wave which propagates through
the fluid normally.



Fig.3: Unstable Sound Wave.

Image captured from the middle frame of a sample run of a sound wave with a value of G which is above
the Jean’s length: G = 5. Also as expected, the simulation created an unstable sound wave which quickly
ended in a peak in fluid density.



4. Conclusions

Fluid mechanics, like any scientific field, can be
difficult to learn without visualization tools. De-
velopment of the One Dimensional Hydrodynamic
Simulator, as well as other simulators in the Digital
Demo Room, eases instruction of higher-level physics
by making available to students and instructors a
simulator with an easy to use interactive web-based
interface. This interface allows the student to con-
centrate on learning the physics behind the subject
without the inconvenience of having to learn the
programming required to create the simulations.
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