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Abstract

The Digital Demo Room (ddr) is a project to cre-
ate an online collection of astrophysics simulators for
pedagogical purposes, including ddr-galaxy. In this
paper, the workings of ddr-galaxy, a 2-d disc galaxy
simulator, are explained. ddr-galaxy’s primary moti-
vation is to assist students in learning about galactic
dynamics, by providing a easy to use galaxy simula-
tor which will eventually include a simple, graphical,
web interface. The major sections of the simulator
are discussed and explained in turn.

1 Preliminary Overview

A complete n-body code contains many carefully con-
structed subroutines. Much of this code, including
rendering interfaces, extraneous functions for devel-
opment purposes, etc. is of little interest — both from
the perspective of physics and of pedagogy. The bulk
of this paper will deal, therefore, with the subsections
of ddr-galaxy that are of general interest to the design
of galactic n-body codes. Namely, this includes back-
ground potentials, potential solvers, trajectory inte-
grators, and initial conditions routines (other consid-
erations, more specific to ddr-galaxy, are briefly out-
lined below). Finally, a brief example of data from a
ddr-galaxy sample run is considered.

1.1 Specific Considerations

ddr-galaxy is written in ANSI C, and was primarily
developed on Alpha EV56 workstations. Both the
GNU C Compiler (gee) and Compaq’s Alpha com-

piler (ccc) were utilized, for debugging and optimiza-
tion purposes respectively.

Screen rendering is implemented using the
OpenGL graphics API, both to on-screen and off-
screen contexts (the latter for MPEG creation). A
freely available MPEG library, libfame, is used to
generate movie files, which can then be accessed via
a WWW interface.

2 Simulator Components

2.1 Analytic Background Potentials

ddr-galaxy is capable of evolving particle trajectories
with or without the influence of interparticle gravita-
tion. In the absence of such self-gravity, the ability
to impose an analytic background potential is clearly
important— by using analytic functions which approx-
imate the potential field of a galaxy, the solutions
to particle trajectories may be viewed with minimal
computational cost (trajectory integration is O(N),
while the potential is differenced using the O(1) an-
alytic background potential). However, under self-
gravity, the imposition of an analytic background po-
tential can also be extremely useful- to model the ef-
fect of a bulge or halo potential near the center of the
disk, for example.

2.1.1 Power Law Potential
A simple background potential is of the form

1
P(r) = m



where € is a small softening parameter!. Typically,
n may be set to unity for a Keplerian potential. For
small N, the trajectories of non-self-gravitating parti-
cles can be evolved as if on orbits about a fixed, cen-
tral, massive object. With self-gravity, this field is an
appropriate choice of background potential for large
N systems with bar instabilities, effectively “pinning
down” the center of mass (which is particularly im-
portant when mass may leave the system, i.e.: mass
leaves the grid on which the potential is solved). This
potential field is identical to the Hernquist? potential
for n = 1.

For a general potential ¢(r,6), the Lagrangian is
L = im( + r8)? — 4. Solving the Euler-Lagrange
equation for the general variable r, we have i = r§? —
%. For cold, circular orbits (7 = 0) this reduces to
the useful relation
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The orbital period of a particle on such a trajectory
is then simply

T— 2nr

2).

From this equation, it is clear that the circular veloc-
ity of a point mass in such a Keplerian potential is
the familiar

Ve

GM
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r
with orbital period
T = 23/ 2‘
vVGM

2.1.2 Logarithmic Potential, Time Depen-
dant /Independent Bar

The general form of the logarithmic potential is as
follows,

6(r,0) = %log(l +12(1 + ecos? (6 — Q1))

where € is a parameter which scales the effect of
the bar, while 2 is its angular frequency. This

background potential is not in itself useful for self-
gravitating simulations, but is a useful analytic ap-
proximation of a galaxies bar potential.

2.1.3 Harmonic Potential

A particle in a harmonic potential undergoes simple
harmonic oscillations. In two dimensions, this poten-
tial function is

¢ = Az® + By?

where A and B are parameters which determine the
relative strength of the field in both x and y respec-
tively. Many interesting trajectories can be plotted
for this potential, i.e.: various Lissajous curves and
“box” orbits. Figure 1 shows one such curve below.
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Fig. 1 The trajectory of a particle in a harmonic potential of the

form ¢ = z2 + 2>

2.1.4 Isochrone Potential

A reasonable approximation for a disc galaxy might
assume roughly constant density near the center,
while the density goes to zero at larger radii. Such a
potential is the Isochrone potential, specified as

GM
)= —
o) = s



M is the total mass of the system, while b is a
constant which determines the systems “linear-
ity”. In other words, as b grows, the potential
becomes more linear in r. A plot of the Isochrone
potential vs. radius was generated for several
values of b, and is included as Figure 2 below.

Fig. 2 Potential vs. Radius for several values of the parameter b

in the isochrone potential. From top to bottom, b=.5,1,2,3,4.

By equation (1) we have for the circular speed at
radius r

GMr?
(b+a)?a’

a=+vVb+r2
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where

2.1.5 Homogeneous Sphere Potential

The potential due to a homogeneous sphere, on a
plane which intersects the sphere through its origin
takes the form

o(r.6) = { —2nGp(a® — 3r?), r<a

471'Gpa3
-, r > a,

where a is the radius of the sphere. This potential
is similar to the potential due to a halo near the center
of an otherwise thin disc galaxy, and accordingly, is
of practical use as a background potential for a self-
gravitating system.

Using equation (1) again, the circular velocity for
a particle in this potential field will be

/4
Ve = 7T3Gpr.

Equation (2) yields

3

T=\G,

for the orbital period.

2.1.6 Superposition of Potentials

In addition to imposing lone background potentials,
it is often useful to impose a superposition of several
different potentials. At the conclusion of this paper,
a brief summary of a run involving such a superposi-
tion is included. In that particular run, a Keplerian,
homogeneous sphere, and logarithmic potential were
used. This combination aimed to model a large disc
galaxy, with a halo and a central compact object.

2.2 Potential Solvers
2.2.1 Direct Summation

One obvious (and terribly inefficient) method for
solving particle accelerations is the direct summation
method. The algorithm simply iterates through each
particle and sums the forces due to all other particles
in the system. In x and y, these equations take the
form
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Accordingly, while this allows for as much preci-
sion as the machine architecture permits, the oper-
ation scales as O(N?). For large N, this compares
rather unfavorably to more advanced particle-mesh
algorithms. However, it is interesting for pedagogi-
cal purposes (the primary motivation of ddr-galaxy),
and has therefore been included as an option. Fig-
ure 3 below demonstrates how this method compares
computationally to the Fourier potential solver.

2.2.2 Fourier Method

A considerably more efficient method of calculating
the potential on the plane involves Fourier meth-
ods. Some accuracy is lost as the system be-
comes “discretized”, but such algorithms are over-
whelmingly more efficient as seen in Figure 3.
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Fig. 3 Plotted here is the number of iterations per second vs. num-
ber of particles for both the direct summation (dotted line) and
Fourier method (solid line) of potential solvers. It is clear that
as N grows large, the computational cost of the direct summation
method quickly becomes prohibitive. Note that this is not a fair
comparison per se, since the number of bodies and the gridsize
(here 256x256) effect the efficiency of the Fourier method. How-
ever, for any gridsize, N may be chosen sufficiently large so that
the Fourier method is much more efficient than direct summation

(as shown here).

To begin, the plane is divided into a grid of IV, x N,
cells. The potential at the a** cell is then

NN,

By = Y GapMp
B

where Mjp is the mass of the particles in the 8" cell
and G is the potential at the o' cell due to the
mass at the 3" cell. Then, clearly

G
Ve + By — Za|?

where #, and Zg are the position vectors of the per-
tinent cells.

This periodic interaction potential G is written on
the mesh for a unit source at the origin. The Fourier
transform of this Green’s function, G is found and
stored. Each time the potential solver is called (it is
called both in the main simulation loop and in the ini-
tial conditions code), a source distribution p is placed
on a second mesh, M. In the main loop, p is found
by smearing the mass using Cloud-In-Cell interpo-
lation (CIC), while the initial conditions code uses
an analytic density distribution function. In both
cases, the Fourier transform p of p is found. By the
convolution theorem, = Gﬁ. This & may in turn
be easily inverse Fourier transformed to reveal the
desired discretized potential. A simple finite differ-
encing scheme, along with bilinear interpolation for
off-grid particles, is then used to tabulate particle ac-
celerations along x and y.

The above Green’s function, while quite simple, is
not ideal. A more appropriate choice of interaction
potential allows the convolution method to find the
potential for an isolated distribution of mass (one
in which periodic boundary conditions do not con-
tribute to the potential on the grid). By isolated, it
is meant that the potential vanishes as r — oo (i.e.,
¢ o< r71).

The method for such an isolated system, as out-
lined by Hockney and Eastwood?, calls for the use of
only one-quarter of the available mesh points for the
interaction potential. Any quarter will suffice, but
ddr-galaxy has chosen the bottom left. Elsewhere,
the density distribution is made to be zero. Using this

Gop = —



method, a correct 7! potential is obtained within the
used quarter of the grid, while it is non-physical else-
where (which is of little consequence, as elsewhere the
potential is never used). Additionally, the potential
is that of an isolated system, i.e., no contribution is
made to the potential due to non-physical boundary
conditions (periodicity).

2.3 Integration Methods

The integrator used by ddr-galaxy is able to advance
particles in a specified potential field ®. This po-
tential can be the result of a combination of a self-
gravitating system and an analytic background po-
tential. Several schemes can be employed, ranging
from minimal computational cost and poor accuracy
to high computational cost and high accuracy. Each
particle has a specified position (z,y) and velocity
(vz,vy), which the integrator uses to advance the par-
ticles. The acceleration of each particle is the normal
Newtonian acceleration:

_o2
or

[

2.3.1 Euler

The Euler integration scheme, being first order, is the
most basic of the integration methods employed by
ddr-galaxy. It has a very low computational cost, but
its error term is O(At?), where At is the stepsize’.
The general form for the Euler method is

Vg + At a, (mna yrnt)
ZTp + At vy

vz,n+1

xn—i—l

which advances a solution from ¢ to ¢t + At. Although
cheap to compute, this method is not very desirable
for practical purposes, due to its inaccuracy. All for-
mula’s shown are for the x-dimension only.

2.3.2 Leapfrog

The Leapfrog scheme is much more practical for a
variety of reasons. Its computational cost is only
slightly higher than that of the Euler method, but

it is much more accurate. The Leapfrog formulas are

v vz,nf% +At aw(mnaynat)

$n+Atvn+%

1
z‘,n+§

Tpny1 =
which has an error term of O(A#®) because it is time-
centered, i.e. it uses the derivatives at the midpoint
of each step. To prepare our system for the Leapfrog
scheme, one can see that the velocity must be moved
half a timestep ahead of the position. Therefore a
higher order half-step must be taken by the velocity,
before anything else gets computed. This step must
be of equal or higher accuracy than O(At3) so that
the overall accuracy of the scheme is conserved. The
extra step taken by the velocity is

At)Q Oa

aE('Z.OJyOJO) + (7

At
’Uz,l = Vg + — 63] |(x0,y070)
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after which the standard Leapfrog formulae apply.

2.3.3 Midpoint

The Midpoint method is somewhat related to the Eu-
ler method, in that the midpoint method starts out
by taking an Euler “trial step”. Then it takes a real
step using the value obtained from the trial step as
follows:

dzl = Atwg,
dvy1 At az(mnaynat)
dvg1
Tpt1 = Tp+ At (Vg + 5 )
dz1 dyl At
Vontl = vm,n—}—Atam(mn—i—T,yn—}—%,t—}—?

where dyl can be obtained in exactly the same way as
dz1, but using vy ., instead of v, ,. This method has
an error term of O(At#?), like the Leapfrog method,
but is somewhat more expensive to compute. How-
ever the Midpoint method is important because it is
easily generalized into much more accurate methods,
namely the Runge-Kutta and Cash-Karp schemes.

2.3.4 Runge-Kutta

One of the most often used integration schemes is
the fourth order Runge-Kutta method, which is a

)



weighted average of four trial steps. Essentially, this
method looks like an expanded Midpoint formula:

dxl = Atwvgn,
dvyl = Ataz(Tn,yn,t)
1
dz2 = At (vgn+ dv; )
drl dyl At
dvg2 = Ataz(xn+iayn+Lat+_)
2 2 2
dvg2
dz3 = At (vgn + U; )
dz?2 dy2 At
dvgd = Atam(xn+%,yn+%,t+7)
dzd = At (vg,n + dvg3)
dvzd = Atag(z, + de3,y, + dy3d, t + At)
b o g dol de2 ds3 ot
n+1 = Yn 6 3 3 6
dvg,1l  dvg2  dvp3  dug4
Uz ,n+1 Vz,n 6 3 3 4

This scheme has a high accuracy (O(At?)), but is also
relatively heavy on computational cost, because one
computes four trial steps per particle, as opposed to
Euler’s one step per particle.

2.3.5 Cash-Karp

The Cash-Karp method is essentially the same as a
fifth order Runge-Kutta method, with the various
constants being those found by Cash and Karp (Nu-
merical Recipes, 2nd ed.). To save space, we will
give the general form of the formulas, with the exact
values for the constants given in appendix A.

dzl = Atwvgn

dvyl = At ay,(xTp,yn,t)
dz2 = At (vg,n + bardugl)

dvy,2 = At ag(zy + bardzl,y, + boardyl,t + axAt)
dz6 = At (vg,n + be1dvgl + - - + besdvy5)

dv,6 = Atay(z, +berdzl+ - -+ besdzd,y,

+berdyl + -+ - + besdy5, t + agAt)
Tpt1 = Yn +crdxl + codx2 + c3dz3 + cadzd

+c5dxd + cgdxb

Vg,n + C1dvg 1 + cadvg2 + c3dvy3 + cadvz4
+c5dvg b + cgdv,6

va:,n+1

This method is the most accurate one ddr-galaxy
has to offer, its error being O(At°). With this ac-
curacy comes a very high computational cost, which
makes this method less practical than its accuracy
suggests.

2.4 Integrator Comparison

To ensure that the integrators ran properly, a conver-
gence test was run using several of the integrators.
We placed 2000 bodies on a Keplerian background
potential of the form

1

¥(r) = r2 +.012

and ran this simulation over 10 units of time for
various different timestep sizes. Figure 4 below
shows the average energy loss per unit time as
a function of timestep for several integrators.
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Fig. 4 Convergence test of several integration schemes. Plotted is

the average change in energy per time vs. timestep size. From

top to bottom- Euler, Leapfrog, Midpoint, Cash-Karp.

Euler diverges very rapidly as the timestep is in-
creased, while the other three are much more efficient



at conserving energy. The error goes to zero for all in-
tegrators as At — 0, indicating that every integrator
converges.

2.5 Initial Conditions

In order to model a galaxy, one needs to set up the
particles in such a way as to most resemble a configu-
ration in a real disk galaxy. This means that particles
need to be started on a circular orbit, with some com-
paratively small radial velocity distributions. The
two main parts of ddr-galaxy —background poten-
tial and self-gravity— require distinct initial condi-
tions setup.

2.5.1 Initial Conditions for Background Po-
tentials

Every particle needs to be assigned a position in the
galaxy. The initial conditions are set up in (r,6) be-
cause the equations are simpler, and then they are
converted into (z,y) using

r cos(6)
= rsin(f)

r =

The initial angle () is randomly determined be-
tween 0 and 27, with equal probability for every an-
gle. The initial r-coordinate is randomly determined
according to an analytic radial surface density. In
ddr-galaxy a Gaussian surface density of the form

1 =2

= € 202
2102

5(r)

is used, where ¢ is user determined.
The velocities in ddr-galaxy are determined as
(vr,vg) and then converted to (v,,v,) using

vy cos(8) — r vy sin(d)
vy sin(6) + r vg cos(9)

Ve =

'Uy =

To obtain vy such that the particle is placed on a cir-
cular orbit, one needs to solve the Lagrange equation
for the generalized coordinate r. Lagrange’s equation
says
d [0L| OL
dt [87*] ~or

For a Lagrangian of the form L = 2 (72 + r26%) — ¥
—and the added circular orbit condition that # = 0—

this yields
. /100
= 0 = -
ve r or

Generally, a star is not on a perfectly circular orbit
around the center of a galaxy. Therefore a small ve-
locity —compared to vg— needs to be applied in the
radial direction. A small v,, distributed Gaussian-
like, is therefore applied, leaving us with a perfectly
functional background potential galaxy.

2.5.2 Initial Conditions for Self-Gravitating
Systems

The initial conditions for a self-gravitating system are
not as easy to set up, since stable configurations are
rare. The (r,6) coordinates are set up using a pro-
cedure analogous to that explained for background
potentials, with one modification. Since ddr-galaxy
can model the bulge at the center of a galaxy by a
spherical background potential, it is unnecessary to
have many particles close to the center of the system.
Therefore a surface density of the form

N(r) =rle™"

is used for its property that it approaches 0 rapidly
towards the center, and it exhibits exponential decay
at larger radii.

For the circular velocities, the same principle holds
as for background potentials. Circular orbits are still
desired, but now the potential is composed of an an-
alytic background potential and a discrete potential
due to the bodies. Therefore, if the potential is de-
fined as ¥ = ¥y, + ¥, , where bg and sg stand for
background and self-gravity, respectively, we can still

use the relation
“Voror

to determine vy. However, it has been shown® that
a self-gravitating system is unstable unless a certain
radial velocity dispersion is included. This radial ve-
locity dispersion is of the form

2

-
e 207

2
2702



where o, is the minimal velocity dispersion required
for stability. It is given by

336 Gx(r)
- K

Or

where « is the frequency of small oscillations about
the circular radius

6 : .
K= Wl(r,a,t) + 37“_4’

here, L is the angular momentum of the particle.

A model set up in this manner should prove to
be stable, especially if appropriate damping has been
introduced to cool down the system.

3 Sample Run

A sample run was conducted with 20,000 bodies self-
gravitating in a superposition of Keplerian, Logarith-
mic, and a homogeneous sphere potential. The intent
was to simulate the potential due to a large halo, cen-
tered upon a massive compact object. The homoge-
neous sphere had a uniform density of

3M

where M is the mass of the disc (here unity) and d is
the disc’s diameter.

The initial conditions were chosen such that each
particle began on circular orbits, with a small radial
velocity dispersion— as outlined in section 2.5.2. The
density distribution in r took the form,

1 2 —r
X(r) = UL
again, as outlined previously.

The accompanying plots were produced at several
time-slices throughout the simulation. As can be
clearly seen, the particles begin with the specified
density distribution and then quickly begin to form
spiral arms as the simulation continues

4 Conclusions

Since galaxies evolve very slowly, it is hard to see
any changes in a galaxy during one lifetime. This
simulator is designed to be a useful tool for students
seeking to learn more about galactic evolution, build-
ing galaxy models, or who just want to play with a
working galaxy model. It is a model where many of
the parameters are input by the user, letting them ex-
periment with many different initial conditions and
potential types. It allows students to actually see a
model galaxy evolve with their own eyes, something
that isn’t possible without computer simulations.
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Appendix A - Cash-Karp Parameters

) a; bij C; C’{
1 37 2825
378 27648

1 1

2 5 g 0 0

3 3 9 250 18575
10 40 10 621 18384

4 3 3 _9 6 125 13525
5 10 10 5 594 55296

_1 5 _10 35 277

5 1 54 2 27 27 0 14446

6 7 1631 175 575 44275 253 512 1
8 55206 512 13824 110592 4096 1771 4

j= 1 2 3 4 5
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